python - mapping a numpy array to a function, passing along the indices -
i have trained per-pixel models on many images , want evaluate them on new images.
what i'd each image of shape (n, m, 3), apply function in fashion:
myfunc(array[i, j, :], i, j) # takes (3,1) input , indices def myfunc(input, i, j): ret1, ret2 = model[i,j].predict(input) # returns single float value return ret1[1]
where i, j indices, myfunc correct model parameters apply. if helps, model can numpy array of objects, same dimensions original input's first 2 dimensions (n, m)
i looking @ ufuncs , vectorize , wasn't sure if did wanted. there provided interface doing this, or have loop through array myself (ugly , possibly slower in python).
alternatively, applying same function each value?
e.g.
myfunc(array[i, j, :]) # takes (3,1) input def myfunc(input): ret1, ret2 = model.predict(input) # returns single float value return ret1[1]
Comments
Post a Comment